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Using detrended fluctuation analysis for lagged correlation analysis of nonstationary signals
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Here we propose a method, based on detrended fluctuation analysis (DFA), to investigate lagged correlations
for nonstationary time series. The aim is to show that the largest correlation can be found at positive lags,
reflecting the existence of underlying delays in the evolution of real time sequences. The performance of the
lagged DFA method is illustrated by selected real examples.
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Stochastic time series from real systems may contain hid-
den correlations due the complex interaction of diverse
mechanisms. The characterization of these correlations is of
prime importance for gaining insights into the nature of such
mechanisms and for developing suitable models for simula-
tion and forecasting purposes. A distinctive feature of many
time series is their nonstationarity, which hampers the usage
of classical statistical methods mainly based on a stationarity
assumption. To confront this situation, different methods
have been proposed in recent decades to be applied for non-
stationary processes. The traditional method for assessing
scaling correlations is the R/S analysis [1]. However, the
results from R/S analysis can be strongly affected by the
presence of nonstationarities and long-run trends. The de-
trended fluctuation analysis (DFA) [2] has emerged as an
important alternative for nonstationary time series, finding
acceptation and application in diverse fields, including heart
rate dynamics [3], neuron spiking [4], long-time weather
records [5], financial time-series [6], expressway traffic flow
[7], earthquake data [8], heart rate variability in fetuses [9],
and many more cases. Examples of interesting DFA applica-
tions for time series that are not obviously stationary are
seismic dynamics and spatial distributions [10], fluctuations
of the North-Atlantic hurricane frequencies [11], behavioral
sequences of wild chimpanzees [12], and characterization of
electroencephalography as a measure of anesthesia depth
[13]. Several recently introduced methods for the detection
of long-range correlations in data series were compared
based on similar ideas as the well-established DFA, indicat-
ing the ability of such methods for revealing different time
and frequency features of complex time series [14]. Exten-
sions of the DFA for high-dimensional analysis have also
been proposed and applied for image scaling studies [15].
Summing up, the DFA is a widely use method for character-
izing different aspects (e.g., scaling, correlations, etc.) of
complex nonstationary time series.

An assumption inherited from classical statistical methods
is that scaling correlations of time series are always pre-
sented without delay. That is, it is assumed that the correla-
tions should be found for zero lags because the correlation
function is a monotonic nonincreasing and positive-definite
function of the lag. But this is not the case for time series
generated autorecursively in the form x;=p(x;_g,X;i_o_i5--.)s
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6=1. In this case, the time series {x;} should present maxi-
mum correlation for the particular lag 6. In this work, we
modify the traditional DFA method to explore the existence
of maximum correlations for nontrivial lags. The lagged
DFA follows the same steps as the traditional method but the
detrended fluctuations are computed by a lagged convolu-
tion. Four examples will be used to illustrate the functioning
of this method and to show that the location of a maximum
correlation at nontrivial lags can be related to the underlying
physics of the system.

The DFA is a method designed to estimate long-range
correlations for nonstationary sequences [2]. The reader is
referred to the Physionet internet site [16] for a detailed de-
scription of the method and a list of publications showing the
use of DFA to characterize correlations. In fact, the proposed
DFA modifications presented here to account for lagged cau-
sality effects can be described as follows. Let us suppose that
X, is a series of length N and that this series is of compact
support. The support is defined as the set of the indices k
with nonzero values x;. The value of x;,=0 is interpreted as
having no value at this k. The lagged DFA is a straightfor-
ward modification of the standard DFA [2] and is imple-
mented following the next steps:

(i) Step 1. Determine the profile,

Yi= X [g-®] i=1,....N.
k=1

For convenience, define the profile Z,;=Y;,4 i=1,....N—6.
Note that Y; is lagged 6 times from Z;.

(ii) Step 2. Divide the profiles Y; and Z; into N,=int[(N
—6)/s] nonoverlapping segments of equal length s.

(iii) Step 3. Calculate the local trends ?(v_l)v +; and Z@_l)s i
for each of the N, segments by a least-squares fit of the
series. Then determine the lagged variance

N

1 ~
VU(S; 9,6])q = ;2 |Y(v—1)s+i - Y(U—l)s+i|q/2|Z(v—1)s+i

i=1
_Z(v—l)s+i|q/2' (l)

The trends ?(U_l)sﬂ- and Z(U_l)m- can be computed from a
linear, quadratic, or higher order polynomial fit of the profile
for each segment. Note that by taking N,=int[(N— 6)/s] non-
overlapping segments in step 2, the values of Z,_;,; are
well defined for all i e[1,s] and all 6=0.
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(iv) Step 4. Average over all segments to obtain the gth
order fluctuation function,

N, 1/q

Fls:0.q) = ]%Ems;e,q)q . 2)

sv=1

(v) Step 5. Determine the scaling behavior of the fluctua-
tion functions by analyzing the log-log plots F(s; 6,q) versus
s for each value of g. If the series x; is long-range power-law
correlated, F(s;6,q) increases, for large values of s, as a
power law

F(s;0,q) ~ s (3)

The scaling exponent «(6,q) depends on the parameter g to
account for multifractal effects and on the lag 6 to account
for any delayed causality. If a(6,q) is not dependent on ¢,
the signal {x;} is associated with a monofractal process. If for
a given ¢ the scaling exponent a(6,q) is maximum at 6,,,,
=1, the time series involves a type of delayed feedback ef-
fect. If =0 and g € R, the above procedure is reduced to the
standard DFA method [17]. As it is well known, the time
series {x;} is noncorrelated if a(6,q)=0.5, persistent if
a(6,q)>0.5 and antipersistent if a(6,q)<0.5.

If =0, one has that Z;=Y,, and the procedure described
above reduces to the standard DFA. In this form, the lagged
DFA can be seen as a generalization of existing detrended
fluctuation analysis schemes to account for the existence of
maximum correlations for a positive lag 6. In order to clarify
how the method operates, several selected real signals will be
considered. In this initial contribution, four single time series
are considered to illustrate the fact that maximal autocorre-
lations can be found at nonzero lags. For simplicity in the
presentation, linear fits were used to compute the linear trend
for each box.

Logistic map. The logistic map x;=px;_;(1-xi_;), x;
€[0,1], displays chaotic behavior for values of p close to 4.
It is clear that the signal x; has a first-order recursiveness, so
one can expect a maximum correlation degree for #=1. For
g=2, p=3.9, and 10° samples, Fig. 1(a) displays the fluctua-
tion function F(s;#,2) for =0 and #=1, showing that the
scaling exponent is larger for #=1. For p=3.9 and p=3.95,
Fig. 1(b) depicts the scaling exponent for different values of
the lag 6, showing a maximum scaling exponent at 6, =1.
This result confirms that with the lagged DFA is possible to
recover the delayed recursiveness of single signals.

Pseudorandom number generators. Portable pseudoran-
dom number generators are based on high-order recursive
procedures. In principle, an exact random number sequence
should be free of correlations, so that a(6,¢)=0.5 for all lag
0=0. We have tested three pseudorandom number genera-
tors that are commonly used for, e.g., Monte Carlo simula-
tion purposes. These generators are the RAN1 function taken
from the Numerical Recipes© book [18], the RAND func-
tion of the MATLAB™ 7.0 package, and the RAN function
of the Compaq Visual Fortran™ package. The results are
displayed in Fig. 2 for 10° samples, showing that, despite
having the zero-lag scaling exponent «(0,2)=0.5 as ex-
pected, significative deviations from the noncorrelated be-
havior is observed for nonzero lags. For instance, a maxi-
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FIG. 1. (Color online) (a) Local scaling exponent for lags #=0
and #=1, showing that a scaling region for scales larger than about
s=20. (b) Scaling exponent as a function of the lag 6 for two dif-
ferent values of the logistic map’s parameter p. The error bars were
computed from the standard deviation. Note that the maximum cor-
relation is preserved at @=1 for the two parameter values p.

mum autocorrelation degree is found at about 6,,,,=12 for
the Visual Fortran Package™ generator, yet it becomes ap-
parent that this generator outperforms the other two because
the scaling exponent shows the smallest deviations from 0.5
for all lag values. Error bars in Fig. 2 are only shown for one
case, indicating that the error bars for the other cases have
similar behavior.

Heart rate variability. As a third example for lagged au-
tocorrelations, heart rate fluctuations from presumably
healthy subjects are considered. The data, consisting of the
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FIG. 2. Lagged scaling exponent for three different pseudoran-
dom number generators. In principle, an accurate pseudorandom
number generator should provide a(q, 6)=0.5 for all g € R and 6
€ R. The results in this figure show that a certain correlation degree
can be found for nonzero lags.
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FIG. 3. Lagged scaling exponent of the heart rate variability for
three different healthy subjects. Observe the maximum correlations
at lags of about 3 and 10 s. Presumably, these lags can be related to
the delays in the action of the sympathetic branch of the autonomic
nervous system.

beat-to-beat dynamics during 6 h, were extracted from the
Physionet database [16]. It is well known that the heart rate
variability for healthy subjects exhibits scaling behavior with
scaling exponent about a(0,2)=0.9-1.0 [2]. Figure 3 shows
the lagged DFA results for three different cases [23], where
for convenience the horizontal scale was normalized by the
individual mean heart rate, such that scales are given in sec-
onds. It can be observed that the larger autocorrelations are
not found at zero lag but for two positive lags. The cause of
these maximum lagged autocorrelations may be explained by
the underlying delays associated with the activity of the au-
tonomic nervous system. Typically there is a 1-3 s delay
before sympathetic activity begins to increase the heart rate,
and there is a further 10-20 s before that effect becomes
complete [19,20]. Since the maximum autocorrelation lags
are located at about 3 and 10 s, it is probable that the lagged
autocorrelation analysis recovers the delays associated with
the sympathetic control action that is established, in prin-
ciple, by the time constants of the norephinephrine release,
vascular response, and dissipation of vascular effects [21].
Such consideration seems also supported by findings show-
ing that a decreased vagal outflow with increased sympa-
thetic activity strengthens the fractal correlation properties of
heart rate variability data [22].

Dow Jones index daily changes. We analyze the daily
closing values of the Dow Jones financial indices. We ana-
lyze the time series of absolute values of the differences of
logarithms for successive days. Figure 4 shows the scaling
exponent as a function of the lag 6 for g=2 and for scales
smaller than a year. One can see that the absolute index
changes are correlated with scaling exponent of about 0.68
for #=0 in agreement with previous studies [6]. However,
the largest correlation degree is found for lags about 6 busi-
ness days with a scaling exponent up to 0.78. This suggests
that the construction of forecasting models should account
for delays in order to improve the prediction capability. That
is, a better prediction performance can be obtained if the
predicted absolute return, say r,, is computed as a function of
past delayed absolute returns {r,, .r, a9 ...... The
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FIG. 4. Lagged scaling exponent for the daily Dow Jones abso-
lute changes. The DFAs were carried out for scales smaller than a
year and ¢g=2. Note the maximum correlations at about 5-7 days.

maximum lag 6, of about 5-7 days seems to correspond to
the feedback effect of weekly cycles in the operation of the
stock markets.

North-Atlantic oscillations. The North-Atlantic oscillation
(NAO) is a climatic phenomenon in the North-Atlantic
Ocean reflecting fluctuations of the difference of sea-level
pressure between the Icelandic low and the Azores high.
Through east-west rocking motions of the Icelandic low and
the Azores high, NAO affects the strength and direction of
westerly winds as well as storm tracks across the North-
Atlantic. Similar to the El Nifio phenomenon in the Pacific
Ocean, the NAO is one of the most important drivers of
climate fluctuations in the North-Atlantic and surrounding
humid climates [11]. The average difference in the pressure
at the Iceland and Azores stations is known as NAO index,
which is reported on a daily basis. The daily NAO index,
from January 1, 1950 to June 30, 2008 (a time series of
length 21 366), was extracted from the U.S. National Oce-
anic and Atmospheric Administration site [24]. Figure 5 pre-
sents the scaling exponent, showing that the larger autocor-
relations are found for 6,,,=8 days. This suggests that a
kind of delayed feedback effect in the NAO evolution. The
purpose of increasing the DFA parameter ¢ is to magnify the
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FIG. 5. Lagged scaling exponent for the NAO, showing that the
largest autocorrelation is found for 6,,,,=8 days.
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oscillation magnitude, such that larger fluctuations play a
more important effect in the DFA computations. In this form,
the results in Fig. 5 also display the scaling exponent for
three different values of g, showing that 6., is unchanged
for large NAO variations. Since the maximum correlations at
0,.x=38 days are more pronounced for large values of ¢, the
lagged correlations should be in particular linked to larger
oscillations.

Summing up, the widely used DFA was adapted to ex-
plore the existence of lagged maximal correlation in nonsta-
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tionary time series. The lagged DFA follows the same steps
as the traditional method but the detrended fluctuations are
computed as a lagged convolution. The application of the
method for different examples, from physics to physiology,
showed that the highest scaling exponents or maximum cor-
relation can be found at nonzero lags. This suggests that the
stochastic processes underlying the generation of such di-
verse time series may involve a lagged recursive procedure.
That is, a signal {x,} must be generated from a recursive
procedure of the form x,=¢(xt_9max,x,_20mx, ).

[1] R. Mandelbrot and M. Taqqu, Bull. Internat. Statist. Inst. 48,
59 (1979).

[2] C. K. Peng et al., Chaos 5, 82 (1995); J. W. Kantelhardt et al.,
Physica A 316, 87 (2002).

[3] H. E. Stanley et al., Physica A 270, 309 (1999).

[4] S. Blesic et al., Physica A 268, 275 (1999).

[5] E. Koscielny-Bunde et al., Phys. Rev. Lett. 81, 729 (1998).

[6] Y. H. Liu er al., Physica A 245, 437 (1997).

[7] S. Tadaki et al., J. Phys. Soc. Jpn. 75, 034002 (2006).

[8] G. Afshar et al., Geophysical Research Abstracts 9, 04835

(2005).

[9] A. Kikuchi ef al., Gynecol. Obstet. Invest. 65, 116 (2008).
[10] L. Telesca er al., Chaos, Solitons Fractals 21, 335 (2004).
[11] J. B. Elsner et al., J Clim. 12, 427 (1999).

[12] C. L. Alados and M. A. Huffman, Ethology 106, 105 (2008).
[13] M. Jospin et al., IEEE Trans. Biomed. Eng. 54, 840 (2007).

[14] A. Bashan et al., Physica A 387, 5080 (2008).

[15] G. F. Gu and W. X. Zhou, Phys. Rev. E 74, 061104 (2006).

[16] www.physionet.org/physiotools/dfa/citations.shtml

[17]J. W. Kantelhardt et al., Physica A 316, 87 (2002).

[18] W. H. Press et al., Numerical Recipes in C: The Art of Science
Computing (Cambridge University Press, New York, New
York, 1990).

[19] E. Magosso et al., Cardiovasc. Eng. 1, 101 (2001).

[20] S. C. Malpas, Am. J. Physiol. Heart Circ. Physiol. 282, H6
(2002).

[21] D. L. Eckberg, Ann. Med. 32, 341 (2000).

[22] M. P. Tulppo et al., Circulation 112, 314 (2005).

[23] Similar behavior was obtained for the cases contained in the
Physionet database.

[24] www.noaa.gov

057202-4



